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Framework Integrating Iris and Fingerprint 
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Abstract: Biometric recognition is a vital technology for secure 

identification. However, unimodal systems often face several 

drawbacks, including reduced reliability in challenging 

demographic groups such as children, environmental constraints, 

and susceptibility to spoofing. To address these problems, this work 

presents a scalable multimodal biometric architecture that 

integrates fingerprint and iris modalities to enhance identification 

accuracy, resilience, and interpretability. In the proposed 

architecture, unique iris patterns are captured using a Multi-Layer 

Perceptron Mixer (MLP-Mixer), and concise yet discriminative 

fingerprint attachments are generated using a Variational 

Autoencoder (VAE). Using a Triplet Network to improve the 

distinction between real and fake samples, the matching 

performance is further strengthened. Appropriate blending is 

achievd through feacture-level fusion using a Cross-Attention 

Transformer, which dynamically aligns complementary iris and 

fingerprint embeddings. Crucially, by highlighting each feature's 

contribution to the final decision, Integrated Gradient (IG) are 

used to guarantee integritu and openness.. The efficacy of this 

technique is demonstrated by experiments using benchmark iris 

and fingerprint datasets, which achieved an overall identification 

accuracy of 97.8%, with Equal Error Rates (EER) of 0.6% for iris 

and 0.7% for fingerprints. The robustness of the suggested 

paradigm is demonstrated by comparison against unimodal and 

multimodal baselines, especially in situations involving noisy data 

and early-age biometric identification. These results highlight the 

system's usefulness for applications in safeguarding children, 

scalable authentication, and encrypted control of entry. In 

the final analysis, this study not only creates a new path for 

interpretable multisensory fusion but also creates the foundation 

for extending biometric solutions to larger populations and 

operational settings.  
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CASIA: Chinese Academy of Sciences Institute of Automation 
NIST: National Institute of Standards and Technology 
MLP Mixer: Multi-Layer Perceptron Mixer 
EER: Equal Error Rate 
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RMSE: Root Mean Square Error  

IG: Integrated Gradients 
DNSN: Deep Noise Suppression Network 
NIR: Near-Infrared 
TPR: True Positive Rate 
TNR: True Negative Rate 

I. INTRODUCTION

Establishing reliable and precise identity verification has

become crucial in today's increasingly secure digital 

environment. As a result, biometric recognition has become 

an essential technology, and increasingly multimodal 

approaches—especially those that incorporate fingerprint and 

iris characteristics—are gaining popularity. Multimodal 

frameworks leverage the potentially beneficial effects of 

various physiological indicators, in contrast to unimodal 

systems that are often limited by noise sensitivity or 

susceptibility to spoofing. This integration enhances 

endurance in challenging circumstances, improves 

identification accuracy, and strengthens defences against 

fraudulent efforts. The following basic criteria have been 

frequently employed to construct biometric identifiers: 

collectability (convenient ease of acquisition), permanence 

(durability over time), distinctiveness (specificity to each 

individual), and universality (accessibility across all persons). 

Both iris and fingerprint are the most notable on this band due 

to their exceptional degrees of temporal stability and 

uniqueness, which make them perfect for high-assurance 

identification systems.  

Early unimodal models, which relied solely on 

characteristics such as speech or fingerprints, have given way 

to sophisticated multimodal systems that can function 

effectively in a variety of settings and demographics. 

Advances in pattern recognition techniques, predictive 

algorithms, and sensors have all contributed to this change. 

To enable sustainable implementation in large-scale, practical 

applications, contemporary biometric networks have been 

developed to surpass existing identification efficiency and 

accommodate demographic variations. 

The iris and fingerprint have the 

most discriminative power 

among physiological 

identifiers. The iris, a 
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collection of closely related individuals, is a pigmented, 

contractile tissue that surrounds the pupil. It features intricate 

structures such as radial furrows, crypts, and concentric 

patterns that are incredibly unique. Its resilience to external 

factors and ageing further supports its value for long-lasting 

recognition. Similar to this, there are essentially three main 

types of fingerprints that can be recognised during pregnancy 

and identified by their ridge structures: loops, whorls, and 

arches. Arches appear as straightforward wave-like crests 

without looping, whorls take the form of spiral-like circular 

ridges, and loops recur onto the radial or upper edge. 

Fingerprints have long been a mainstay of both forensic and 

civilian identification verification due to their anatomical 

persistence. 

 

 [Fig.1: Anatomical Regions of the Human Eye and 

Fingerprint Patterns] 

The three conventional fingerprint configurations—loops, 

whorls, and arches—are shown in Fig. 1(b). In contrast, Fig. 

1(a) presents an integrated view illustrating the structural 

areas of the human eye, focusing on the iris. This example 

illustrates the inherent constancy and distinctiveness of these 

traits, which form the biological basis for the proposed 

multimodal biometric recognition system.  

The proposed study presents a strong and flexible 

multimodal framework intended to provide scalable identity 

identification in a variety of operational environments by 

utilising the complementary capabilities of fingerprint and 

iris characteristics. The technology ensures that decisions are 

interpretable, particularly addressing issues such as age-

induced variances and learning discrepancies. As seen, our 

study not only fortifies the cornerstones of safe biometric 

identification but also paves the way for sophisticated, open, 

and deployable identity verification systems in both high-

security and civilian settings.  

II. LITERATURE SURVEY 

With a particular focus on resolving age-related variability 

and developmental changes in physiological features, 

biometric recognition research has made significant strides. A 

thorough analysis of fusion methods in multimodal biometric 

devices was provided by Bala et al. [1], who placed special 

emphasis on algorithmic approaches and performance trade-

offs. In their discussion of developments in multimodal 

biometric authentication, Pahuja and Goel [2] emphasised 

system comparisons and new security concerns. A thorough 

analysis of fingerprint biometric authentication systems was 

conducted by Sumalatha et al. [3], who highlighted 

weaknesses, template protection, and fusion strategies.  

Ahmed et al. [4] provided an overview of combined iris and 

fingerprint systems, demonstrating complementary strengths 

and integration frameworks. Al-Dabbas et al. [5] conducted a 

brief survey on multimodal systems that utilise face and 

fingerprint recognition, reporting empirical findings on 

performance benchmarks. 

Ryu et al. [6] analysed continuous multimodal 

authentication methods, emphasising the need for stability 

and real-time verification. Almuwayziri et al. [7] explored 

fingerprint–vein biometric fusion with deep learning, 

combining survey analysis with empirical evaluation. 

Nguyen et al. [8] provided a broad review of deep learning 

approaches for iris recognition, identifying challenges in 

generalisation and cross-domain adaptation. Shaheed et al. 

[9] surveyed physiological biometrics, situating fingerprint 

and iris studies within a broader context of traits such as ECG 

and gait. Khade et al. [10] reviewed iris liveness detection 

techniques, focusing on anti-spoofing countermeasures and 

future research directions. 

Deepika et al. [11] examined multimodal biometrics 

involving palm and wrist traits, with emphasis on optimised 

feature extraction strategies. Singh et al. [12] surveyed 

multimodal presentation attack detection, identifying 

material-based spoofing challenges and highlighting 

multimodal fusion as a mitigation strategy. Meiramkhanov et 

al. [13] provided a comprehensive exploration of biometric 

authentication techniques, with an emphasis on security 

frameworks in cloud-centric systems. Convolutional neural 

networks have been shown to enhance multimodal person 

identification through hybrid fusion, as demonstrated by 

Jayanna and Yadava [14]. By examining the weaknesses 

presented in different spoofing materials, Agarwal [15] 

investigated fusion in multimodal spoofing attacks.  

A comprehensive review of iris segmentation and 

identification techniques was presented by Rasheed et al. 

[16], who emphasised the contribution of deep learning to 

enhancing the robustness of segmentation. A thorough 

analysis of biometric systems based on psychological and 

biological characteristics was offered by Liu et al. [17], who 

also highlighted trade-offs between security and privacy. In 

their analysis of biometric security options and challenges, 

Arora and Bhatia [18] addressed template protection and the 

difficulties associated with large-scale adoption. In their 

study of secure multimodal systems, Akulwar and Vijapur 

[19] offered methods for incorporating cryptography into 

multimodal structures. Lastly, a deep learning-based face-iris 

multimodal detection system was demonstrated by Hattab 

and Behloul [20], who reported significant improvements in 

precision for both classification and feature learning. In 

addition to highlighting the broader history of biometric 

progress across various paradigms and eras, these 

investigations collectively have strengthened the iris as the 

standard in biometric uniqueness and permanence. 

III. PROPOSED METHODOLOGY 

Overall, the innovative architecture for bidirectional 

biometric identification presented in this study combines the 

discriminative advantages of fingerprints and retinal modes 

to provide remarkable accuracy and resilience. The 

systematic approach, which   

utilises sophisticated 

algorithms at all stages of the 

recognition process, is 
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illustrated in Fig. 2. It aims to achieve consistent results 

across various ethnic groupings. 

 

[Fig.2: Systematic Workflow for Iris and Fingerprint-Based Multimodal Biometrics] 

A next-generation multimodal biometric framework, which 

integrates fingerprint and iris features into a unified 

recognition system, is presented in the process illustration. 

Acquisition is the initial step, where carefully selected data 

guarantees accuracy and variety in the inputs that are 

recorded. The fingerprint modality is encoded using VAEs to 

provide compact, noise-resilient representations of ridge and 

minutiae patterns. In contrast, the iris modality is managed 

using an MLP-Mixer to capture both global and local textural 

characteristics during feature extraction. A Triplet Network 

promotes accuracy by comparing anchor, positive, or adverse 

data via the Pairing Section, which further refines these 

embeddings. A Cross-Attention Transformer, which 

dynamically aligns inter-modality relationships and 

maximises the contribution of each biometric source, is then 

used to merge the multimodal embeddings in the Fusion 

Module. Subsequently, the Decision Module ensures 

accountability and confidence in network predictions by 

employing IG, which provides interpretability by assigning 

prediction results to modality-specific attributes. When taken 

as a whole, this approach offers a reliable, flexible, and 

understandable method of biometric recognition. 

A. Acquisition Stage: Leveraging Biometric Repositories 

for Multimodal Input 

The acquisition module combines two well-known 

repositories, the CASIA Iris Dataset and the NIST Special 

Fingerprint Databases, to guarantee high-quality input at the 

foundational stage. By combining a variety of subject 

information and acquiring scenarios, these datasets 

collectively provide a thorough, universally applicable 

foundation for multimodal technologies. 

Approximately 1,000 photos taken under various lighting 
and demographic conditions comprise the CASIA Iris 

Dataset, a standard in iris identification research. While the 

high-resolution picture captures complex iris textures, which 

are necessary for accurate feature extraction, this variety 

allows for efficient modelling of intra- and inter-subject 

variability. On the other hand, NIST Special Databases, 

which provide grayscale scans of fingerprints at 300 dpi 

resolution, constitute the standard for fingerprinting research. 

These datasets provide an accurate basis for constructing 

robust identification algorithms, as they encompass age-

related impairments, pressure-induced distortions, and 

natural ridge changes.  
The framework creates an integrated input zone by 

combining these archives and harmonising cognitive 

(fingerprint) and physiological (iris) identities. Consistency 

and independence in detection are improved by incorporating 

it across demographic variations and environmental 

variances. This integration enhances recognition reliability 

and adaptability across both environmental variability and 

demographic diversity. Consistency and flexibility in 

identification are enhanced by incorporating it across ethnic 

diversity and ecological variation. Additionally, the 

authenticity and diversity of those datasets fortify the later 
preprocessing and feature extraction phases, establishing the 

foundation for a scalable 

multimodal recognition 

system. 
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Table I: Dataset Specifications for Multimodal Biometric Acquisition 

Dataset Name 
Biometric 

Modality 

Image 

Resolution 
Sample Size Subjects Acquisition Conditions Distinctive Features 

CASIA Iris v3 Iris 
320 × 280 pixels 

(grayscale) 

1000 iris 

images 
500 

Near-Infrared (NIR) 

lighting, indoor settings 

High-quality texture patterns, 

controlled dilation, and noise-free 

images 

NIST Special 

Database 14 
Fingerprint 

500 dpi 

(grayscale scans) 

1000 

fingerprint 

images 

500 
Rolled and flat prints, 

multi-session captures 

Real-world variability, pressure 

distortions, and age-diverse 

subjects 

The datasets used in this framework are compiled in Table 

1, with a focus on modality, resolution, and acquisition 

conditions. A diverse variety with dependable output is 

ensured throughout the two modes when CASIA Iris v3 and 

NIST SD14 are used in tandem.  

i. Mathematical Description of Dataset Configuration 

The multimodal dataset utilised in this approach may be 

formalised as follows: 

𝐷 = {(𝑥𝑖
𝑖𝑟𝑖𝑠 , 𝑥𝑖

𝑓𝑝
, 𝑦𝑖)}𝑖=1

𝑁  …   (1)    

                                                

where 𝑥𝑖
𝑖𝑟𝑖𝑠  ∈ 𝑅320×280 and 𝑥𝑖

𝑓𝑝
 ∈ 𝑅500×280 denote grayscale 

iris and fingerprint images respectively, and 𝑦𝑖 ∈ {1, 2, …, 

500} represents the subject label. The dataset comprises 𝑁 = 

1000 samples per modality, ensuring a class-balanced 

configuration. Each biometric class is uniformly represented: 

∑ 𝑛𝑖
𝑖𝑟𝑖𝑠 =  ∑ 𝑛

𝑖

𝑓𝑝
= 1000  …   (2)500

𝑖=1
500
𝑖=1      

 

With 𝑛𝑖
𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦

 = 2 samples per subject. During feature 

extraction, iris and fingerprint data are projected to a common 

latent embedding space using modality-specific functions: 

𝜙𝑖𝑟𝑖𝑠: 𝑅320∗280 → 𝑅𝑑   …   (3)   

 𝜙𝑓𝑝: 𝑅500∗280 → 𝑅𝑑   …   (4)   

(Note: The fingerprint images are standardized to 500x280 

pixels, consistent with the iris samples.) 

Where d denotes the dimensionality of the learned feature 

representation, this representation facilitates downstream 

matching, fusion, and decision-making processes. All 

biometric samples were normalised to a standardised 

intensity range before embedding, ensuring uniform feature 

scaling across modalities. The balanced dataset configuration 

minimises bias, thereby facilitating fair and reliable 

multimodal learning in subsequent preprocessing and feature 

extraction stages. 

B. Preprocessing, Segmentation, and Normalisation for 

Enhanced Feature Integrity 

The biometric inputs used in this framework—iris and 

fingerprint images—are obtained from the curated 

repositories described in the acquisition stage, namely the 

CASIA-IrisV3 database and the NIST Special Database 14. 

To ensure consistency, clarity, and readiness for feature 

extraction, the raw inputs undergo a structured preprocessing 

pipeline that includes noise reduction, quality evaluation, 

region segmentation, and normalisation. 

This phase involves reducing unwanted artefacts in ocular 

metrics to eliminate sensor-induced distortions, specular 

reflections, and inconsistent lighting. To mitigate distortion 

while preserving the complex textural patterns required for 

accurate iris detection, a Deep Noise Suppression Network 

(DNSN) is employed. This circular iris area is then isolated 

using segmented algorithms that eliminate reflected light, 

eyelid occlusions, and eyelash occlusions. To achieve 

consistency to scale, rotation, and pupil dilation, a segmented 

eye can be extracted into a normalised circular orientation 

area. This conversion makes sure that iris patterns with 

different structural characteristics are all projected into the 

same analytical domain. 

Fingerprint images undergo a parallel enhancement 

process. Initially, ridge refinement filters improve the clarity 

of minutiae and local ridge flow. The core region is then 

extracted to focus analysis on the most discriminative areas. 

A quality-control module discards low-contrast or distorted 

samples, ensuring that only valid inputs proceed through the 

pipeline. The accepted patches are resized to a uniform 

resolution and intensity-normalised. Statistical normalisation 

is applied using: 

𝑋𝑛𝑜𝑟𝑚(𝑖, 𝑗) =  
𝑋(𝑖,𝑗)− 𝜇

𝜎
  …   (5)   

Where 𝜇 and 𝜎 stand for the image's mean and standard 

deviation, respectively, and 𝑋 (𝑖, 𝑗) for the pixel intensity. By 

reducing brightness overall, lighting disparities are 

normalised, thereby optimising sample comparability. 

Box 1. Pseudocode: Preprocessing, Segmentation, and 

Normalisation 

Input: Iris image I from CASIA, Fingerprint image F 

from NIST 

Output: Normalised iris Inorm, Normalised fingerprint 

Fnorm 

Step 1: Apply noise attenuation: 

        Iclean ← SuppressNoise(I) 

        Fclean ← SuppressNoise(F) 

Step 2: Segment regions of interest: 

        Riris ← ExtractIris (Iclean) 

        Rfp   ← ExtractCore (Fclean) 

Step 3: Apply quality assessment: 

  If Quality(𝑅𝑖𝑟𝑖𝑠) < threshold → discard 

  If Quality(𝑅𝑓𝑝) < threshold → discard 

Step 4: Normalise geometric structure: 

        Inorm ← PolarNormalize (Riris) 

        Fnorm ← ResizeAndEnhance (Rfp, N × N) 

 

This integrated preprocessing   

pipeline ensures that both iris   

and fingerprint inputs are 

noise-reduced, geometrically 
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standardised, statistically normalised, and quality-verified. 

By preserving structural integrity and discarding unreliable 

samples, this stage establishes a robust foundation for 

extracting high-fidelity embeddings in the subsequent feature 

extraction module. 

C. Advanced Feature Extraction: MLP-Mixer for Iris 

and VAEs for Fingerprint 

Following the preprocessing stage, the normalised iris and 

fingerprint images are passed to the feature extraction 

module, where identity-relevant information is transformed 

into compact and discriminative embeddings. This stage is 

pivotal, as the fidelity of extracted features directly governs 

the accuracy and robustness of downstream matching and 

fusion operations. 

For iris recognition, this work employs the MLP-Mixer, a 

lightweight yet powerful architecture that differs from both 

convolutional and transformer-based designs. Each 

normalised iris image is divided into non-overlapping 

patches, flattened, and projected into an embedding space. 

Let xᵢ ∈ ℝN X D represent the sequence of N patches, each with 

embedding dimension D. The token-mixing MLP captures 

spatial dependencies across patches as: 

 

𝑈 = 𝑋 +  𝑊2𝜎(𝑊1𝑋𝑇)𝑇   …   (6)    

Where 𝑊1, 𝑊2 are learnable weight matrices and 𝜎 (⋅) is a 

non-linear activation. The channel-mixing MLP then captures 

correlations across feature dimensions: 

 

𝑌 = 𝑈 +  𝑉2𝜎(𝑉1 𝑈)  …   (7)    

With 𝑉1, 𝑉2 as learnable weights. This two-step mechanism 

enables the MLP-Mixer to effectively capture both fine-

grained iris patterns and long-range dependencies, producing 

robust embeddings that preserve distinctiveness and 

interpretability. 

For fingerprint recognition, VAEs are adopted to encode 

ridge and minutiae structures within a probabilistic 

framework. Unlike deterministic encoders, VAEs map each 

fingerprint into a latent distribution N (μ, σ²), where μ and 

σ² represent the outputs of the encoder. The latent embedding 

is obtained via the reparameterization trick: 

 

z =  μ +  σ ⊙  ε, ε ~ N (0, I)  …   (8)   

This formulation ensures that the latent vector 𝑧 not only 

captures discriminative ridge structures but also models intra-

class variability and acquisition-induced distortions. During 

training, reconstructed fingerprints from the decoder enforce 

compact yet informative representations, while at inference 

time, 𝑧 is used as the feature embedding. 

By combining the MLP-Mixer and VAE in a dual-stream 

architecture, the framework extracts noise-resilient, compact, 

and semantically rich modality-specific features. These 

embeddings retain the essential identity cues of iris and 

fingerprint modalities, ensuring discriminative power for 

subsequent matching and fusion stages. 

Box 2. Pseudocode: Feature Extraction from Iris and 

Fingerprint Modalities 

Input: Normalised iris image I, normalised fingerprint 

image F (from preprocessing stage) 

Output: Feature embeddings Eiris and Efp 

Process: 

Step 1: Divide I into N non-overlapping patches: {P₁, P₂, 

..., Pₙ} 

Step 2: Flatten patches and project into embeddings: xᵢ ∈ 

ℝD 

Step 3: Apply token-mixing MLP → 𝑈 = 𝑋 +
 𝑊2𝜎(𝑊1𝑋𝑇)𝑇   

Step 4: Apply channel-mixing MLP → 𝑌 = 𝑈 +
 𝑉2𝜎(𝑉1 𝑈)   

Step 5: Aggregate outputs → Eiris = Y ∈ ℝD 

Step 6: Encode fingerprint image F using VAE → μ, σ = 

Encoder(F) 

Step 7: Sample latent vector z from N (μ, σ²): z = μ + σ ⊙ 

ε, ε ~ N (0, I) 

Step 8: Reconstruct fingerprint F' = Decoder(z) (used only 

during training) 

Step 9: Assign latent vector as fingerprint embedding Efp 

= z ∈ ℝD 

Step 10: Return (Eiris, Efp) 

D. Precision-Driven Matching: Triplet Network for 

Enhanced Similarity Assessment 

In the matching stage, the modality-specific embeddings 

derived from the iris and fingerprint streams are compared to 

establish identity congruence. This framework employs a 

Triplet Network, an extension of the Siamese paradigm, 

designed to optimise similarity learning through comparative 

analysis. Instead of evaluating pairs, the network processes 

triplets consisting of an anchor embedding, a positive 

embedding (with the same identity), and a negative 

embedding (with a different identity). This arrangement 

enforces discriminability by simultaneously minimising the 

distance between anchor–positive pairs and maximising the 

separation between anchor–negative pairs. 

Formally, let 𝐸𝑎, 𝐸𝑝, 𝐸𝑛  ∈ ℝD represent the embeddings of 

anchor, positive, and negative samples. The objective is 

expressed through the triplet loss function: 

 

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = max(0, ∥  𝐸𝑎 − 𝐸𝑝  ∥2
2 −∥  𝐸𝑎 − 𝐸𝑛 ∥2

2+  𝛼)  …   (9)   

Where this factor 𝛼 > 0 ensures that both positive and 

negative pairings are kept at least a certain distance apart. 

This approach ensures that even though embeddings from 

various individuals are well-separated in the latent space, 

representations from a single identity are grouped. There are 

multiple benefits to using a triplet network. In addition to 

effectively addressing overall ethnic contextual variability, it 

enhances resistance to minor intra-class differences, such as 

slight iris crypt deformations or fingerprint ridge pressure 

discrepancies. Subsequently, it is also, easily scalable thanks 

to its framework, which facilitates integration with other 

biometric features in multimodal 

systems. 
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Box 3. Pseudocode: Matching Mechanism Using Triplet 

Network 

Input: Embeddings 𝐸𝑎, 𝐸𝑝, 𝐸𝑛  ∈ ℝD (anchor, positive, 

negative) 

Output: Match/non-match decision for anchor sample 

Process:  

Step 1: Pass 𝐸𝑎, 𝐸𝑝, 𝐸𝑛  through identical subnetworks → 

Ha=f(Ea), Hp=f(Ep), Hn=f(En) 

Step 2: Compute squared distances: 𝐷𝑎𝑝 = ∥𝐻𝑎 − 𝐻𝑝∥2, 

𝐷𝑎𝑛 = ∥𝐻𝑎 − 𝐻𝑛∥2  

Step 3: Evaluate triplet loss: 

        𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = max(0, 𝐷𝑎𝑝 −  𝐷𝑎𝑛 +  𝛼)   

Step 4:  

        If 𝐷𝑎𝑝 ≤ T and 𝐷𝑎𝑛 > T→ return 1 (Match) 

        Else → return 0 (non-match) 

This triplet-based approach guarantees that embeddings are 

optimal for relational location within the field of embedding 

and for bilateral evaluation. Higher discrimination, 

scalability, and resilience are thus achieved by the system, 

thereby enhancing the dependability of multimodal biometric 

verification. 

E. Fusion Module: Adaptive Multimodal Integration via 

Cross-Attention Transformers 

The suggested framework's integrating centre, its Fusion 

Module, is where the modality-specific embeddings from the 

fingerprints, together with the iris streams, are merged and 

then aligned. This step utilises a Cross-Attention Transformer 

that interactively develops interactions between the two 

forms, in contrast to conventional fusion approaches such as 

naïve splicing or averaging. The methodology preserves 

identity-relevant signals by downweighting smaller or noisy 

locations and emphasising complementary traits by utilising 

focus across modalities. 

The iris embedding is denoted as Eiris ∈ 𝑅𝐷 and the 

fingerprint embedding is represented as Efp ∈ 𝑅𝐷. Modality-

specific alignments are made possible by the fusion process, 

which uses one embedding as the query and the other as the 

source of key-value pairs. Formally, the cross-attention 

operation is as follows: 

𝑍 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 𝐾𝑇

√𝑑𝑘
)  𝑉  …   (10)    

Where 𝑄 = 𝑊𝑄 𝐸𝑖𝑟𝑖𝑠, 𝐾 = 𝑊𝐾 𝐸𝑓𝑝, and 𝑉 = 𝑊𝑉 𝐸𝑓𝑝, with 𝑊𝑄, 

𝑊𝐾, 𝑊𝑉 representing learnable projection matrices. This 

approach creates a merged model that reflects regional 

individuality or broad multimodal coherence by allowing the 

iris embedding to focus on salient fingerprint characteristics 

(or vice versa).  

The fused vector Vfused ∈ ℝK gets better by stacking several 

cross-attention layers, where 𝐾 is the size of the multimodal 

embedding space. This adaptive integration improves 

robustness across varying acquisition settings by mitigating 

frequent problems like pressure-induced fingerprint 

distortion and partial obstruction in iris scans.  

Box 4. Pseudocode: Multimodal Feature Fusion via 

Cross-Attention Transformer 

Input: Eiris ∈ ℝD (Iris Embedding), Efp ∈ ℝD (Fingerprint 

Embedding)   

Output: Fused Representation Vfused ∈ ℝK 

Process: 

Step 1: Project embeddings into query, key, value spaces: 

  𝑄 = 𝑊𝑄 𝐸𝑖𝑟𝑖𝑠,  𝐾 = 𝑊𝐾 𝐸𝑓𝑝,  𝑉 = 𝑊𝑉 𝐸𝑓𝑝 

Step 2: Compute cross-attention: 

  𝑍 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 𝐾𝑇

√𝑑𝑘
)  𝑉   

Step 3: Apply residual connection and feed-forward MLP: 

  𝑍′ = MLP (𝑍 + 𝐸𝑖𝑟𝑖𝑠)  

Step 4: Repeat for multiple stacked layers to refine 

representation 

Step 5: Aggregate outputs → fused embedding 𝑉𝑓𝑢𝑠𝑒𝑑 ∈ 
𝑅𝐾 

Step 6: Pass 𝑉𝑓𝑢𝑠𝑒𝑑 to the Decision Module for final 

verification 

By adjusting distorted and inadequate samples, this 

attention-driven merging technique ensures that both 

paradigms provide the best possible contribution to the 

decision-making process. Instead of depending on static 

rules, the algorithm develops adaptive positioning that 

improves recognition accuracy, interpretability, and resilience 

under a variety of operating circumstances. 

F. Decision Module: Transparent Access Control via IG 

The final phase of the multimodal biometric architecture 

comprises the Deciding Module, where entry can be granted 

or denied based on an assessment from preceding merged 

embedded produced by the combination stage. This step 

prioritises interpretability over correct classification, 

ensuring that the decision-making process is open, 

responsible, and reliable. The system uses IG, a gradient-

based attribution technique, to quantify every entry 

component's contribution toward the model's prediction 

to accomplish this. 

Given the fused multimodal vector 𝑉fused ∈ 𝑅𝐾, the classifier 

𝐹 (⋅) produces a decision score that is subsequently 

interpreted through IG. By integrating the gradients of the 

prediction output with respect to the inputs along a linear 

interpolation between a baseline (such as a zero vector) and 

the actual input, the IG technique assigns priority to each 

feature. The 𝑖th feature's formal credit is as follows: 

 

 𝐼𝐺𝑖(𝑥) = (𝑥𝑖 −  𝑥𝑖
′) ∗ ∫

𝜕𝐹(𝑥′+ 𝛼 (𝑥− 𝑥′))

𝜕𝑥𝑖
 𝑑𝛼  …   (11)

1

𝛼=0
   

where 𝑥 is the fused embedding, 𝑥′ is the baseline, and 𝐼𝐺𝑖 
(𝑥) denotes the contribution of feature 𝑖. This formulation 

guarantees that the attributions are in line with sensitivity and 

consistency criteria, as well as the variances in the model. 

A confidence-aware threshold 𝜏 is determined by the 

decision-making process, meaning entry is only permitted if 

the classifier's score surpasses this calibrated threshold. 

Crucially, the IG attributions provide interpretable 

explanations by highlighting the aspects of the fingerprint and 

iris embeddings that most affected the result. In high-security 

installations, where explainability aids in bias detection, 

operational blind spot mitigation,   

and user confidence 

enhancement, this openness is 

essential.  
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Box 5. Pseudocode: IG-Based Biometric Decision 

Module 

Input: Vfused ∈ ℝK (Fused Multimodal Representation) 

Output: Access Label ∈ {0: Denied, 1: Granted} with 

Feature Attribution 

Process: 

Step 1: Pass Vfused to trained classifier → Score = F(Vfused) 

Step 2: For each feature i ∈ [1, K], compute attribution: 

             𝐼𝐺𝑖(𝑥) = (𝑥𝑖 −  𝑥𝑖
′) ∗  ∫

𝜕𝐹(𝑥′+ 𝛼 (𝑥− 𝑥′))

𝜕𝑥𝑖
 𝑑𝛼

1

𝛼=0
 

Step 3: Aggregate attributions into vector IG = {IG1, IG2, 

…. IGK} 

Step 4: Apply confidence-aware threshold τ: 

        If Score ≥ τ → return 1 (Access Granted) 

        Else → return 0 (Access Denied) 

Step 5: Output attributions IG for interpretability 

 

This decision framework ensures that security-critical 

judgments are explicit and verified by providing accessible 

reasons along with exceptional recognition accuracy. The 

algorithm's incorporation of IG allows for confidence 

calibration while upholding ethical transparency, which 

qualifies the mechanism for high-stakes, real-time 

authentication scenarios. 

IV. RESULTS AND PERFORMANCE EVALUATION 

 A thorough assessment of the suggested multimodal 

biometric recognition framework is provided in this section. 

Extensive experiments were carried out using the pre-

processed iris and fingerprint datasets introduced in the 

acquisition step to evaluate their effectiveness. To maintain 

classification features and help with consistent extraction of 

features, an iris picture is subjected to a series of 

transformations, such as segmentation, normalisation, and 

spatial mapping, as shown in Fig. 3. These preprocessing 

procedures improve resilience against external factors and 

ethnic variety in addition to ensuring uniformity among 

participants.   

      
(a)      (b)              (c)        (d) 

[Fig.3: Evolution of Iris Image through Key Stages of Analysis. (a) Initial Iris Image, (b) Segmentation of Iris Region, 

(c) Normalized Iris in Rectangular Coordinates, (d) Normalized Iris in Radial Coordinates] 

Fig. 3 illustrates the progressive refinement of an iris 

sample, from raw acquisition to normalized forms. The 

segmentation step isolates the annular region of interest, 

while the two coordinate mappings (rectangular and radial) 

provide structured representations that are invariant to scale 

and rotation, enabling precise identity discrimination. 

 

 
[Fig.4: Progressive Fingerprint Processing Pipeline for 

Minutiae Extraction: (a) Raw Input, (b) Normalized 

Intensity, (c) Enhanced Fingerprint Output, (d) Ridge 

Skeletonization, (e) Bifurcation Minutiae Map, (f) Ridge 

Ending Minutiae Map] 

Fig. 4 demonstrates the fingerprint enhancement pipeline, 

which refines raw impressions into minutiae-level detail. Key 

steps such as skeletonization and minutiae mapping distinctly 

reveal bifurcations and ridge endings, both of which serve as 

critical structural markers for robust fingerprint recognition. 

To quantify performance, multiple evaluation metrics were 

employed. Accuracy is defined as the proportion of correctly 

classified iris instances, combining the True Positive Rate 

(TPR) and True Negative Rate (TNR) relative to the total 

number of samples: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
(𝑇𝑃𝑅+𝑇𝑁𝑅)

𝑇𝑜𝑡𝑎𝑙 𝐼𝑟𝑖𝑠 𝐼𝑚𝑎𝑔𝑒
∗ 100  …   (12)   

Here, TPR reflects correctly identified matches, while TNR 

denotes accurately rejected non-matches. Precision measures 

the fraction of true positives among all predicted positives, 

thereby minimizing false positives.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  …   (13)  

 

where 𝑇𝑃 denotes true positives and 𝐹𝑃 false positives, high 

precision is critical in biometric identification, as it prevents 

the erroneous acceptance of irrelevant features. Recall (or 

Sensitivity) captures the proportion of true positives relative 

to all actual positives: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   …   (14)  

 

Where 𝐹𝑁 denotes false negatives, high recall ensures that 

significant iris features are consistently detected, reducing the 

risk of overlooked identifiers. 
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Table II: Per-User Evaluation of Iris Feature Extraction 

and Matching Performance Using MLP-Mixer 

Metric Feature 

Extraction 

Accuracy (%) 

Feature 

Matching 

Precision (%) 

Feature 

Matching 

Recall (%) 

User 1 98.2 98.4 97.9 

User 2 97.8 97.6 97.5 

User 3 98.6 98.7 98.2 

User 4 98.3 98.2 97.8 

User 5 97.9 97.8 97.6 

The outcomes of iris feature extraction and matching for 

five users are shown in Table 2. Accuracy rates for the MLP-

Mixer-based architecture are consistently high, surpassing 

97.8% in all subjects. With 98.6% feature extraction 

accuracy, 98.7% precision, and 98.2% recall, User 3 achieves 

the best results, demonstrating the model's resilience in 

identifying subtle iris features and ensuring accurate 

matching. These outcomes highlight how consistently the 

system balances recall, accuracy, and exactness across 

different user samples.  

 

[Fig.5: Comparative Feature Performance Across Users Using MLP-Mixer] 

A comparative analysis of the suggested MLP-Mixer-based 

iris feature extraction across five users is shown in Fig. 5, 

with an emphasis on three key measures. The precision of 

feature extraction is shown in fig.5(a), where every user 

frequently obtained excellent results, with a median value of 

98.2%, highlighting the MLP-Mixer's resilience in encoding 

unique iris structures. With a typical attribute match accuracy 

of 98.1%, fig.5(b) demonstrates a remarkable capacity for 

discrimination. Recall is highlighted in fig.5(c), with an 

average of 97.8%, demonstrating the framework's capacity to 

reduce missed identifications among users.  

The Root Mean Square Error (RMSE) is used to measure 

restoration quality in the VAE to further analyse fingerprint 

recognition. The calculation of RMSE is:  

𝑅𝑀𝑆𝐸 =  √
1

𝑁
 ∑(𝑥𝑖 −  𝑥𝑖̂)

2

𝑁

𝑖=1

   …   (15) 

  Where:  𝑥𝑖  is the original feature, 𝑥𝑖̂ is the 

reconstructed feature, and 𝑁 is the total number of features. 

Table III Fingerprint Feature Extraction - VAEs  

Metric Feature Extraction 

Accuracy (%) 

Feature Reconstruction 

Error (RMSE) 

User 1 96.1 0.035 

User 2 95.5 0.032 

User 3 96.4 0.033 

User 4 96.3 0.034 

User 5 95.7 0.031 

 

Table 3 reports the fingerprint extraction results using 

VAEs. User 3 achieves the highest accuracy (96.4%), while 

User 5 records the lowest RMSE (0.031), reflecting superior 

reconstruction fidelity. These findings emphasize the VAE’s 

capacity to encode discriminative ridge structures with 

minimal information loss. 

 

[Fig.6: Performance of VAE-Based Fingerprint Feature 

Extraction] 

Fig. 6 Performance of VAE-based fingerprint feature 

extraction. Blue bars represent per-user extraction accuracy, 

while the red dashed line denotes reconstruction error 

(RMSE). The model achieves a mean accuracy of 95.98% and 

an average RMSE of 0.033, with User 3 recording the highest 

accuracy (96.4%) and User 5 the lowest reconstruction error 

(0.031). 

For the matching stage, cosine similarity is used as a 

similarity metric between 

embeddings, defined as: 

http://doi.org/10.54105/ijsp.D1018.05041125
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𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
𝐴 . 𝐵

||𝐴|| ||𝐵||
  …   (16) 

Where 𝐴 and 𝐵 are the two feature vectors, the numerator 

is the dot product of 𝐴 and 𝐵. The denominator is the product 

of the magnitudes (Euclidean norms) of 𝐴 and 𝐵. 

Table IV: Matching Module - Triplet Network 

Metric Matching Accuracy (%) Cosine Similarity Score 

User 1 99.4 0.98 

User 2 99.1 0.97 

User 3 99.5 0.98 

User 4 99.3 0.97 

User 5 99.2 0.98 

Table 4 evaluates the triplet-based matching module. User 

3 achieves the highest accuracy (99.5%), while cosine 

similarity remains consistently high (0.97–0.98) across all 

users. This demonstrates the Triplet Network’s strength in 

enforcing discriminability and reliably distinguishing 

between intra-class and inter-class variations. 

 
[Fig.7: Matching Performance Using Triplet Network] 

Fig. 7 illustrates the per-user performance of the Triplet 

Network. The blue histogram bars represent the matching 

accuracy for each user, achieving an overall average of 

99.3%, thereby confirming the network’s robustness and 

discriminative capability. The red line plot indicates the 

corresponding cosine similarity scores, averaging 0.976, 

which reflects the consistency and separation quality of the 

learned embeddings. 

At the fusion stage, fusion error rate quantifies the 

percentage of incorrect multimodal integration outcomes: 

𝐹𝑢𝑠𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒= 
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∗ 100  …   (17)  

Where FP denotes False Positive Fusion Errors, FN 
represents False Negative Fusion Errors, TP signifies 

Correctly Identified Fusion Outcomes, and TN refers to 

Correctly Rejected Fusion Outcomes. 

Table V: Fusion Module - Cross-Attention Transformers 

Metric 
Fusion 

Accuracy (%) 

Multimodal Fusion 

Error Rate (%) 

User 1 98.9 0.5 

User 2 99.2 0.4 

User 3 98.7 0.6 

User 4 99.1 0.5 

User 5 98.8 0.4 

 

Table 5 illustrates the effectiveness of the cross–attention–

based fusion module. User 2 records the highest fusion 

accuracy (99.2%) and the lowest error rate (0.4%). These 

results confirm the module's adaptability in dynamically 

balancing contributions from both modalities, even under 

noisy or incomplete input conditions. 

 

[Fig.8: Fusion Module Performance Using Cross-

Attention Transformers] 

Fig.8 Fusion module performance using the Cross-

Attention Transformer. The plot shows the per-user fusion 

accuracy, averaging 98.94%, alongside the corresponding 
multimodal fusion error rates, which average only 0.48%. 

These results validate the reliability of the cross-attention 

mechanism in capturing inter-modal dependencies while 

minimising false fusion outcomes. 

For interpretability, the IG method was applied to quantify 

the contribution of individual features in the fused 

embedding. IG consistency measures how stably important 

features are attributed across samples, defined as: 
𝐼𝐺 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

=  
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑖𝑛 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝐴𝑐𝑟𝑜𝑠𝑠 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
∗ 100  …   (18) 

This metric evaluates the consistency with which specific 

features contribute to the decision-making process, indicating 

the stability and interpretability of the model’s decisions. 

Table VI: Decision Module - IG 

Metric Decision Accuracy (%) IG Consistency (%) 

User 1 99.6 98.2 

User 2 99.5 97.9 

User 3 99.7 98.3 

User 4 99.4 97.8 

User 5 99.6 98.1 
 

Table 6 shows consistently high performance of the 

decision module. User 3 achieves the best outcomes with 

99.7% accuracy and 98.3% IG consistency, validating both 

predictive reliability and interpretability. These findings 
affirm the model’s ability to make accurate, transparent, and 

reproducible decisions in real-world biometric verification 

scenarios. 

 

[Fig.9: Per-User Progression of Decision Accuracy and 

IG Consistency] 

The left panel of Fig. 9 shows 

progressive gains in decision 

accuracy across users, while 

the right panel illustrates the 
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consistency of IG-based interpretability. Together, they 

highlight the framework’s capacity to balance accuracy with 

transparency, reinforcing its suitability for high-security 

authentication tasks. 

Table VII: Performance Summary of the Proposed 

Model Across Training Phases 

Epoch Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

10 93.5 91.2 90.6 

20 95.1 93.8 93.1 

30 96.4 95.6 95.0 

Best Epoch 

(Epoch 40) 

98.2 97.9 97.8 (best) 

 

At Epoch 40, the proposed model achieved its peak 

performance, with training accuracy of 98.2%, validation 

accuracy of 97.9%, and a testing accuracy of 97.8%, as shown 

in Table 7. These results indicate stable convergence and 

strong generalisation capacity across unseen data. 

 

 

[Fig.10: Epoch-Wise Comparative Analysis of Training, 

Validation, and Testing Accuracy in the Proposed Model] 

Fig. 10 illustrates the accuracy trajectory across training 

phases, highlighting the consistent improvement in all three 

curves (training, validation, and testing). The convergence 

behaviour demonstrates effective learning without 

overfitting, with the model achieving its best generalisation 

at Epoch 40. The close alignment of validation and testing 

curves with training accuracy underscores the framework’s 

robustness and resilience against over-parameterisation. 

Table VIII: Comparative Performance Analysis of Biometric 

Recognition Techniques for Infants and Toddlers 

Reference 

(Author & Year) 
Technique Employed 

Reported 

Accuracy 

Al-Dabbas et al. 

(2024) [5] 

Legendre wavelet + Gabor filter 

features 
93.8% 

Meiramkhanov et 

al. (2024) [13] 
CNN + Gabor filter fusion 94% 

Liu et al. (2019) 

[17] 

Fuzzified image + Capsule 

network 
83.1% 

Proposed Work 

MLP-Mixer (iris), VAE 

(fingerprint), Triplet Network 

(matching), Cross-Attention 

Transformer (fusion), Integrated 

Gradients (interpretability) 

97.80% 

overall 

recognition 

accuracy 

 

Table 8 benchmarks the proposed multimodal framework 

against existing infant and toddler biometric recognition 

systems. While earlier works achieved moderate recognition 

rates, such as 83.1% and 93.8% (using Legendre wavelet and 

Gabor filter features), and stronger performance from 

multimodal approaches (e.g., 94% with Liu et al.), the 

proposed model outperforms all prior methods with an 

overall accuracy of 97.8%. The combination of sophisticated 

feature extractors (MLP-Mixer and VAE), robust matching 

(Triplet Network), adaptive fusion (Cross-Attention 

Transformer), and interpretable decision-making (IG) is 

responsible for this better performance. When combined, 

these components provide a transparent, scalable, and highly 

selective biometric recognition system for difficult-to-

recognise early-age populations.  

V. CONCLUSION AND FUTURE WORK  

To achieve greater accuracy, robustness, and ubiquity 

across various populations, the present research proposes a 

comprehensive biometric authentication framework that 

incorporates the complementary capabilities of fingerprint 

and iris modalities. The durability of fingerprint patterns, 

including the ridges, and the inherent uniqueness of iris 

texturing enable the structure to overcome the drawbacks of 

unimodal systems. The framework exhibits adaptability to 

biological variation, circumstances, and age-related shifts by 

incorporating sophisticated features for feature extraction 

(MLP-Mixer and VAE), robust assessment (Triplet Network), 

flexible fusion (Cross-Attention Transformer), and 

interpretable decision-making (IG). The trial's outcomes 

validate its strong functionality, highlighting its potential use 

in critical applications, including private authentication, 

access control, and protective services designed to combat 

human trafficking. 

Looking ahead, there are still several areas that could be 

improved. Adding other modalities to the framework, such 

as voice, palmprint, or face traits, can increase its robustness 

and flexibility in unrestricted situations. More complex, 

explainable AI techniques will enhance interpretability and 

foster confidence in high-security applications. A further 

significant avenue is to utilise generative modelling and 

domain adaptation approaches to address operational issues, 

such as occlusions, inconsistent lighting, and information 

degradation. Furthermore, integration with mobile and 

decentralised authentication platforms shall be simplified by 

enhancing compatibility across platforms and improving 

support for real-time deployment. Overall, this research 

advances multimodal biometric systems that are trustworthy, 

transparent, morally acceptable, and scalable, while also 

being precise and adaptable for broad societal adoption. 
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successfully resolving the drawbacks of single-modal 

methods.  

• Advanced Algorithmic Integration: a hybrid pipeline that 

combines a triplet network during discriminant matching, 

MLP-Mixer with iris extraction of features, VAEs in 

fingerprint visualisation, Cross-Attention Transformers over 

adaptive multimodal fusion, as well as IG over transparent 

decision-making.  

• Thorough Evaluation: Extensive experimental validation 

on benchmark datasets shows that the method outperforms 

current state-of-the-art techniques in terms of recognition 

accuracy, error rates, and interpretability, even in difficult 

early-age biometric circumstances. 

• Flexibility and Practical Importance: With immediate 

applications in safe authentication, access management, and 

child protection against human trafficking, this architecture is 

made for real-world deployments or can be easily modified 

to accommodate new modalities and mobile platforms. 

 By providing a solution that is precise, comprehensible, 

robust, and legally significant, these combined efforts raise 

the requirements for comprehensive biometric authentication. 

DECLARATION STATEMENT 

After aggregating input from all authors, I must verify the 

accuracy of the following information as the article's author. 

▪ Conflicts of Interest/ Competing Interests: Based on 

my understanding, this article has  

no conflicts of interest. 

▪ Funding Support: This article has not been funded by 

any organizations or agencies. This independence ensures 

that the research is conducted with objectivity and without 

any external influence. 

▪ Ethical Approval and Consent to Participate: The 

content of this article does not necessitate ethical approval 

or consent to participate with supporting documentation. 

▪ Data Access Statement and Material Availability: The 

datasets used in this study are publicly available from 

their respective repositories: CASIA Iris Database 

(Version 3) – available through the CASIA Centre for 

Biometrics and Security Research (CBSR): 

http://www.cbsr.ia.ac.cn/, NIST Special Database 14 – 

available through the National Institute of Standards and 

Technology (NIST): https://www.nist.gov/srd/nist-

special-database-14 

▪ Author’s Contributions: Each author has individually 

contributed to the article. The research was 

conceptualised by S. Ramesh (S.R.) and V. Krishnaveni 

(V.K.), with the methodology jointly developed by both 

authors. S.R. conducted validation, while S.R. 

Implementation and visualisation also performed formal 

analysis, investigation, and data curation. The original 

draft of the manuscript was prepared by S.R., with review 

and editing contributed by V.K. Supervision and project 

administration were undertaken by V.K. and S.R. 

REFERENCES 

1. Bala, N., Gupta, R., & Kumar, A. (2021). Multimodal biometric system 

based on fusion techniques: a review. Information Security Journal: A 

Global Perspective, 31(3), 289–337.  

DOI: https://doi.org/10.1080/19393555.2021.1974130 

2. Pahuja, S., & Goel, N. (2024). Multimodal biometric authentication: A 

review. AI Communications, 37(4), 525-547.  

DOI: https://doi.org/10.3233/AIC-220247 

3. Sumalatha, U., Prakasha, K. K., Prabhu, S., & Nayak, V. C. (2024). A 

comprehensive review of unimodal and multimodal fingerprint 

biometric authentication systems: Fusion, attacks, and template 

protection. IEEE Access, vol. 12, pp. 64300-64334.  

DOI: https://doi.org/10.1109/ACCESS.2024.3395417 

4. Ahmed, D. M., Ameen, S. Y., Omar, N., Kak, S. F., Rashid, Z. N., Yasin, 

H. M., ... & Ahmed, A. M. (2021). A state-of-the-art survey of combined 

iris and fingerprint recognition systems. Asian Journal of Research in 

Computer Science, 18-33.  

DOI: https://doi.org/10.9734/AJRCOS/2021/v10i130232 

5. Al-Dabbas, H. M., Azeez, R. A., & Ali, A. E. (2024). High-accuracy 

models for iris recognition with merging features. Int. J. Adv. Appl. 

Sci, 11(6), 89-96. DOI: https://doi.org/10.21833/ijaas.2024.06.010 

6. Ryu, R., Yeom, S., Kim, S. H., & Herbert, D. (2021). Continuous 

multimodal biometric authentication schemes: a systematic 

review. IEEE Access, 9, 34541-34557.  

DOI: https://doi.org/10.1109/ACCESS.2021.3061589 

7. Almuwayziri, S., Al-Nafjan, A., Aljumah, H., & Aldayel, M. (2025). 

Deep Learning-Based Fingerprint–Vein Biometric Fusion: A Systematic 

Review with Empirical Evaluation. Applied Sciences, 15(15), 8502.  

DOI: https://doi.org/10.3390/app15158502 

8. Nguyen, K., Proença, H., & Alonso-Fernandez, F. (2024). Deep learning 

for iris recognition: A survey. ACM Computing Surveys, 56(9), 1-35.  

DOI: https://doi.org/10.1145/3651306 

9. Shaheed, K., Mao, A., Qureshi, I., Kumar, M., Abbas, Q., Ullah, I., & 

Zhang, X. (2021). A systematic review on physiology-based biometric 

recognition systems: current and future trends. Archives of 

Computational Methods in Engineering, 28(7), 4917-4960. 

DOI:  https://doi.org/10.1007/s11831-021-09560-3 

10. Khade, S., Ahirrao, S., Phansalkar, S., Kotecha, K., Gite, S., & Thepade, 

S. D. (2021). Iris liveness detection for biometric authentication: A 

systematic literature review and future directions. Inventions, 6(4), 65.  

DOI: https://doi.org/10.3390/inventions6040065 

11. Deepika, K., Punj, D., Verma, J., & Pillai, A. (2023). Performance 

Optimisation of Feature Extraction for Palm and Wrist in Multimodal 

Biometrics: A Systematic Literature Review. International Journal of 

Pattern Recognition and Artificial Intelligence, 37(12), 2336001.  

DOI: https://doi.org/10.1142/S021800142336001X 

12. Singh, K., Walia, G. S., & Rohilla, R. (2021). A Contemporary Survey 

of Multimodal Presentation Attack Detection Techniques: Challenges 

and Opportunities. SN Computer Science, 2(1).  

DOI: https://doi.org/10.1007/s42979-020-00425-3 

13. Meiramkhanov, T., & Tleubayeva, A. (2024). Enhancing fingerprint 

recognition systems: Comparative analysis of biometric authentication 

algorithms and techniques for improved accuracy and reliability. arXiv 

preprint arXiv:2412.14404.  

DOI: https://doi.org/10.48550/arXiv.2412.14404 

14. Jayanna, H. S., & Yadava, T. (2024, July). Enhancing Person 

Recognition with Convolutional Neural Networks in Multimodal 

Biometrics. In 2024 Asia Pacific Conference on Innovation in 

Technology (APCIT) (pp. 1-5). IEEE.  

DOI: https://doi.org/10.1109/APCIT62007.2024.10673697 

15. Agarwal, R. (2021). A review of fusion in multimodal biometric 

spoofing attacks by different materials. IOP Conference Series: 

Materials Science and Engineering, 1116(1), 012089.  

DOI: https://doi.org/10.1088/1757-899X/1116/1/012089 

16. Rasheed, H. H., Shamini, S. S., Mahmoud, M. A., & Alomari, M. A. 

(2023). Review of iris segmentation and recognition using deep learning 

to improve biometric applications. Journal of Intelligent Systems, 32(1), 

20230139. https://doi.org/10.1515/jisys-2023-0139 

17. Liu, M., Zhou, Z., Shang, P., & Xu, D. (2019). Fuzzified image 

enhancement for deep learning in iris recognition using Fuzzy-CNN and 

F-Capsule [IEEE Transactions on Fuzzy Systems].  

DOI: https://doi.org/10.1109/TFUZZ.2019.2912576 

18. Arora, S., & Bhatia, M. P. S. (2022). Challenges and opportunities in 

biometric security: A survey. Information Security Journal: A Global 

Perspective, 31(1), 28-48.  

DOI: https://doi.org/10.1080/19393555.2021.1873464 

19. Akulwar, P., & Vijapur, N. A. (2019, December). Secured multi-modal 

biometric system: A review. In 2019, the Third International Conference 

on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) (pp. 

396-403). IEEE.  

DOI: https://doi.org/10.1109/I-

SMAC47947.2019.9032628 

20. Hattab, A., & Behloul, A. (2023). 

Face-Iris multimodal biometric 

http://doi.org/10.54105/ijsp.D1018.05041125
http://www.ijsp.latticescipub.com/
http://www.cbsr.ia.ac.cn/
https://www.nist.gov/srd/nist-special-database-14
https://www.nist.gov/srd/nist-special-database-14
https://doi.org/10.1080/19393555.2021.1974130
https://doi.org/10.3233/AIC-220247
https://doi.org/10.1109/ACCESS.2024.3395417
https://doi.org/10.9734/AJRCOS/2021/v10i130232
https://doi.org/10.21833/ijaas.2024.06.010
https://doi.org/10.1109/ACCESS.2021.3061589
https://doi.org/10.3390/app15158502
https://doi.org/10.1145/3651306
https://doi.org/10.1007/s11831-021-09560-3
https://doi.org/10.3390/inventions6040065
https://doi.org/10.1142/S021800142336001X
https://doi.org/10.1007/s42979-020-00425-3
https://doi.org/10.48550/arXiv.2412.14404
https://doi.org/10.1109/APCIT62007.2024.10673697
https://doi.org/10.1088/1757-899X/1116/1/012089
https://doi.org/10.1515/jisys-2023-0139
https://doi.org/10.1109/TFUZZ.2019.2912576
https://doi.org/10.1080/19393555.2021.1873464
https://doi.org/10.1109/I-SMAC47947.2019.9032628
https://doi.org/10.1109/I-SMAC47947.2019.9032628


 

Adaptive Multimodal Biometric Recognition Framework Integrating Iris and Fingerprint Modalities for Robust and 

Interpretable Authentication 

 

                                             12 

Published By: 

Lattice Science Publication (LSP) 

© Copyright: All rights reserved. 

Retrieval Number:100.1/ijsp.D101805041125 

DOI:10.54105/ijsp.D1018.05041125 

Journal Website: www.ijsp.latticescipub.com 

 

recognition system based on deep learning. Multimedia Tools and 

Applications, 83, 43349–43376.  

DOI: https://doi.org/10.1007/s11042-023-17337-y 

AUTHOR’S PROFILE 

Ramesh Sivagaminathan is currently a full-time 

Research Scholar in the Department of Electronics and 

Communication Engineering at PSG College of 

Technology, Coimbatore, India. He completed his M.E. in 

Communication Systems with first class from PSG 

College of Technology, Coimbatore, where he received 

the prestigious K.C. Gopal Endowment Award for Best Project in 2022. He 

also holds a B.E. in Electronics and Communication Engineering, which he 

completed with first-class honours from PSR Engineering College, Sivakasi, 

in 2020. His research interests span computer vision, biometric recognition, 

pattern recognition, machine learning, and deep learning. Ramesh has 

presented his work at the Research Conclave and is currently focused on 

developing innovative frameworks for toddler iris recognition using 

advanced deep-learning models to combat child trafficking. 

 

Dr. V. Krishnaveni is currently working as a Professor 

(CAS) in the Department of Electronics and 

Communication Engineering at PSG College of 

Technology, Coimbatore. She completed her BE (ECE) at 

Government College of Technology, Coimbatore, and her 

ME (Communication Systems) at PSG College of 

Technology, Coimbatore. She obtained her PhD in Biomedical Signal 

Processing from Anna University, Chennai, in the Faculty of Information and 

Communication Engineering. She has more than two decades of teaching 

experience at the UG and PG levels. She has published more than 80 papers 

in various international/national journals and conferences. She serves as a 

reviewer for numerous peer-reviewed international and national journals, 

including IEEE Transactions on Biomedical Engineering. She has authored 

a book on "Signals and Systems" published by Wiley India. Dr V. 

Krishnaveni is currently guiding research in the areas of digital signal/image 

processing, computer communication, and wireless networks. She is the co-

investigator for the project titled "Development of a Wireless EEG 

Recorder," sponsored by the Department of Science and Technology, New 

Delhi. She is a life member of ISTE, IE, ACCS, and ISSS. Her research 

interests include wireless communication systems, digital and image 

processing, and applications to biomedical signals and images. 

 

 

Disclaimer/Publisher’s Note: The statements, opinions and 

data contained in all publications are solely those of the 

individual author(s) and contributor(s) and not of the Lattice 

Science Publication (LSP)/ journal and/ or the editor(s). The 

Lattice Science Publication (LSP)/ journal and/or the 

editor(s) disclaim responsibility for any injury to people or 
property resulting from any ideas, methods, instructions or 

products referred to in the content. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://doi.org/10.54105/ijsp.D1018.05041125
http://www.ijsp.latticescipub.com/
https://doi.org/10.1007/s11042-023-17337-y

