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Abstract: Biometric recognition is a vital technology for secure
identification. However, unimodal systems often face several
drawbacks, including reduced reliability in challenging
demographic groups such as children, environmental constraints,
and susceptibility to spoofing. To address these problems, this work
presents a scalable multimodal biometric architecture that
integrates fingerprint and iris modalities to enhance identification
accuracy, resilience, and interpretability. In the proposed
architecture, unique iris patterns are captured using a Multi-Layer
Perceptron Mixer (MLP-Mixer), and concise yet discriminative
fingerprint attachments are generated using a Variational
Autoencoder (VAE). Using a Triplet Network to improve the
distinction between real and fake samples, the matching
performance is further strengthened. Appropriate blending is
achievd through feacture-level fusion using a Cross-Attention
Transformer, which dynamically aligns complementary iris and
fingerprint embeddings. Crucially, by highlighting each feature's
contribution to the final decision, Integrated Gradient (I1G) are
used to guarantee integritu and openness.. The efficacy of this
technique is demonstrated by experiments using benchmark iris
and fingerprint datasets, which achieved an overall identification
accuracy of 97.8%, with Equal Error Rates (EER) of 0.6% for iris
and 0.7% for fingerprints. The robustness of the suggested
paradigm is demonstrated by comparison against unimodal and
multimodal baselines, especially in situations involving noisy data
and early-age biometric identification. These results highlight the
system's usefulness for applications in safeguarding children,
scalable authentication, and encrypted control of entry. In
the final analysis, this study not only creates a new path for
interpretable multisensory fusion but also creates the foundation
for extending biometric solutions to larger populations and
operational settings.
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CASIA: Chinese Academy of Sciences Institute of Automation
NIST: National Institute of Standards and Technology
MLP Mixer: Multi-Layer Perceptron Mixer

EER: Equal Error Rate

FAR: False Acceptance Rate

FRR: False Rejection Rate

RMSE: Root Mean Square Error

IG: Integrated Gradients

DNSN: Deep Noise Suppression Network

NIR: Near-Infrared

TPR: True Positive Rate

TNR: True Negative Rate

I. INTRODUCTION

Establishing reliable and precise identity verification has

become crucial in today's increasingly secure digital
environment. As a result, biometric recognition has become
an essential technology, and increasingly multimodal
approaches—especially those that incorporate fingerprint and
iris characteristics—are gaining popularity. Multimodal
frameworks leverage the potentially beneficial effects of
various physiological indicators, in contrast to unimodal
systems that are often limited by noise sensitivity or
susceptibility to spoofing. This integration enhances
endurance in challenging circumstances, improves
identification accuracy, and strengthens defences against
fraudulent efforts. The following basic criteria have been
frequently employed to construct biometric identifiers:
collectability (convenient ease of acquisition), permanence
(durability over time), distinctiveness (specificity to each
individual), and universality (accessibility across all persons).
Both iris and fingerprint are the most notable on this band due
to their exceptional degrees of temporal stability and
uniqueness, which make them perfect for high-assurance
identification systems.

Early unimodal models, which relied solely on
characteristics such as speech or fingerprints, have given way
to sophisticated multimodal systems that can function
effectively in a variety of settings and demographics.
Advances in pattern recognition techniques, predictive
algorithms, and sensors have all contributed to this change.
To enable sustainable implementation in large-scale, practical
applications, contemporary biometric networks have been
developed to surpass existing identification efficiency and
accommodate demographic variations.

The iris and fingerprint have the
most discriminative power
among physiological
identifiers. The iris, a
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collection of closely related individuals, is a pigmented,
contractile tissue that surrounds the pupil. It features intricate
structures such as radial furrows, crypts, and concentric
patterns that are incredibly unique. Its resilience to external
factors and ageing further supports its value for long-lasting
recognition. Similar to this, there are essentially three main
types of fingerprints that can be recognised during pregnancy
and identified by their ridge structures: loops, whorls, and
arches. Arches appear as straightforward wave-like crests
without looping, whorls take the form of spiral-like circular
ridges, and loops recur onto the radial or upper edge.
Fingerprints have long been a mainstay of both forensic and
civilian identification verification due to their anatomical
persistence.
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[Fig.1: Anatomical Regions of the Human Eye and
Fingerprint Patterns]

The three conventional fingerprint configurations—loops,
whorls, and arches—are shown in Fig. 1(b). In contrast, Fig.
1(a) presents an integrated view illustrating the structural
areas of the human eye, focusing on the iris. This example
illustrates the inherent constancy and distinctiveness of these
traits, which form the biological basis for the proposed
multimodal biometric recognition system.

The proposed study presents a strong and flexible
multimodal framework intended to provide scalable identity
identification in a variety of operational environments by
utilising the complementary capabilities of fingerprint and
iris characteristics. The technology ensures that decisions are
interpretable, particularly addressing issues such as age-
induced variances and learning discrepancies. As seen, our
study not only fortifies the cornerstones of safe biometric
identification but also paves the way for sophisticated, open,
and deployable identity verification systems in both high-
security and civilian settings.

II. LITERATURE SURVEY

With a particular focus on resolving age-related variability
and developmental changes in physiological features,
biometric recognition research has made significant strides. A
thorough analysis of fusion methods in multimodal biometric
devices was provided by Bala et al. [1], who placed special
emphasis on algorithmic approaches and performance trade-
offs. In their discussion of developments in multimodal
biometric authentication, Pahuja and Goel [2] emphasised
system comparisons and new security concerns. A thorough
analysis of fingerprint biometric authentication systems was
conducted by Sumalatha et al. [3], who highlighted
weaknesses, template protection, and fusion strategies.
Ahmed et al. [4] provided an overview of combined iris and
fingerprint systems, demonstrating complementary strengths
and integration frameworks. Al-Dabbas et al. [5] conducted a
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brief survey on multimodal systems that utilise face and
fingerprint recognition, reporting empirical findings on
performance benchmarks.

Ryu et al. [6] analysed continuous multimodal
authentication methods, emphasising the need for stability
and real-time verification. Almuwayziri et al. [7] explored
fingerprint—vein biometric fusion with deep learning,
combining survey analysis with empirical evaluation.
Nguyen et al. [8] provided a broad review of deep learning
approaches for iris recognition, identifying challenges in
generalisation and cross-domain adaptation. Shaheed et al.
[9] surveyed physiological biometrics, situating fingerprint
and iris studies within a broader context of traits such as ECG
and gait. Khade et al. [10] reviewed iris liveness detection
techniques, focusing on anti-spoofing countermeasures and
future research directions.

Deepika et al. [11] examined multimodal biometrics
involving palm and wrist traits, with emphasis on optimised
feature extraction strategies. Singh et al. [12] surveyed
multimodal presentation attack detection, identifying
material-based spoofing challenges and highlighting
multimodal fusion as a mitigation strategy. Meiramkhanov et
al. [13] provided a comprehensive exploration of biometric
authentication techniques, with an emphasis on security
frameworks in cloud-centric systems. Convolutional neural
networks have been shown to enhance multimodal person
identification through hybrid fusion, as demonstrated by
Jayanna and Yadava [14]. By examining the weaknesses
presented in different spoofing materials, Agarwal [15]
investigated fusion in multimodal spoofing attacks.

A comprehensive review of iris segmentation and
identification techniques was presented by Rasheed et al.
[16], who emphasised the contribution of deep learning to
enhancing the robustness of segmentation. A thorough
analysis of biometric systems based on psychological and
biological characteristics was offered by Liu et al. [17], who
also highlighted trade-offs between security and privacy. In
their analysis of biometric security options and challenges,
Arora and Bhatia [18] addressed template protection and the
difficulties associated with large-scale adoption. In their
study of secure multimodal systems, Akulwar and Vijapur
[19] offered methods for incorporating cryptography into
multimodal structures. Lastly, a deep learning-based face-iris
multimodal detection system was demonstrated by Hattab
and Behloul [20], who reported significant improvements in
precision for both classification and feature learning. In
addition to highlighting the broader history of biometric
progress across various paradigms and eras, these
investigations collectively have strengthened the iris as the
standard in biometric uniqueness and permanence.

III. PROPOSED METHODOLOGY

Overall, the innovative architecture for bidirectional
biometric identification presented in this study combines the
discriminative advantages of fingerprints and retinal modes
to provide remarkable accuracy and resilience. The
systematic ~ approach,  which
utilises sophisticated
algorithms at all stages of the
recognition  process, is
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illustrated in Fig. 2. It aims to achieve consistent results

across various ethnic groupings.
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[Fig.2: Systematic Workflow for Iris and Fingerprint-Based Multimodal Biometrics]

A next-generation multimodal biometric framework, which
integrates fingerprint and iris features into a unified
recognition system, is presented in the process illustration.
Acquisition is the initial step, where carefully selected data
guarantees accuracy and variety in the inputs that are
recorded. The fingerprint modality is encoded using VAEs to
provide compact, noise-resilient representations of ridge and
minutiae patterns. In contrast, the iris modality is managed
using an MLP-Mixer to capture both global and local textural
characteristics during feature extraction. A Triplet Network
promotes accuracy by comparing anchor, positive, or adverse
data via the Pairing Section, which further refines these
embeddings. A  Cross-Attention Transformer, which
dynamically aligns inter-modality relationships and
maximises the contribution of each biometric source, is then
used to merge the multimodal embeddings in the Fusion
Module. Subsequently, the Decision Module ensures
accountability and confidence in network predictions by
employing IG, which provides interpretability by assigning
prediction results to modality-specific attributes. When taken
as a whole, this approach offers a reliable, flexible, and
understandable method of biometric recognition.

A. Acquisition Stage: Leveraging Biometric Repositories
for Multimodal Input

The acquisition module combines two well-known
repositories, the CASIA Iris Dataset and the NIST Special
Fingerprint Databases, to guarantee high-quality input at the
foundational stage. By combining a variety of subject
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information and acquiring scenarios, these datasets
collectively provide a thorough, universally applicable
foundation for multimodal technologies.

Approximately 1,000 photos taken under various lighting
and demographic conditions comprise the CASIA Iris
Dataset, a standard in iris identification research. While the
high-resolution picture captures complex iris textures, which
are necessary for accurate feature extraction, this variety
allows for efficient modelling of intra- and inter-subject
variability. On the other hand, NIST Special Databases,
which provide grayscale scans of fingerprints at 300 dpi
resolution, constitute the standard for fingerprinting research.
These datasets provide an accurate basis for constructing
robust identification algorithms, as they encompass age-
related impairments, pressure-induced distortions, and
natural ridge changes.

The framework creates an integrated input zone by
combining these archives and harmonising cognitive
(fingerprint) and physiological (iris) identities. Consistency
and independence in detection are improved by incorporating
it across demographic variations and environmental
variances. This integration enhances recognition reliability
and adaptability across both environmental variability and
demographic diversity. Consistency and flexibility in
identification are enhanced by incorporating it across ethnic
diversity and ecological variation. Additionally, the
authenticity and diversity of those datasets fortify the later
preprocessing and feature extraction phases, establishing the
foundation for a scalable
multimodal recognition
system.
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Table I: Dataset Specifications for Multimodal Biometric Acquisition

Bi tri I
Dataset Name tome r ¢ mag? Sample Size Subjects | Acquisition Conditions Distinctive Features
Modality Resolution
. .. High-quality texture patterns,
20 x 2 1 1 Near-Infi NIR
CASIA Iris v3 Iris 320 80 pixels .000 s 500 . e-'clr n rared ( . ) controlled dilation, and noise-free
(grayscale) images lighting, indoor settings .
images
1 Real-worl iabilit
NIST Special , , 500 dpi 000 Rolled and flat prints, cal-world variability, pressure
Fingerprint fingerprint 500 . . distortions, and age-diverse
Database 14 (grayscale scans) . multi-session captures .
images subjects

The datasets used in this framework are compiled in Table
1, with a focus on modality, resolution, and acquisition
conditions. A diverse variety with dependable output is
ensured throughout the two modes when CASIA Iris v3 and
NIST SD14 are used in tandem.

i. Mathematical Description of Dataset Configuration

The multimodal dataset utilised in this approach may be
formalised as follows:

D = {(x{",x/P, y )}y .. (D)

where x{"* € Ryzpa50 and x/P € Rsppas0 denote grayscale
iris and fingerprint images respectively, and y: € {1, 2, ...,
500} represents the subject label. The dataset comprises N =
1000 samples per modality, ensuring a class-balanced
configuration. Each biometric class is uniformly represented:

500 piris = ¥500 /P = 1000 ... (2)

With n?wdality = 2 samples per subject. During feature
extraction, iris and fingerprint data are projected to a common
latent embedding space using modality-specific functions:

d)iris: R320%280 _, pd 3

d)fp: R500%280 _, pd (4)

(Note: The fingerprint images are standardized to 500x280
pixels, consistent with the iris samples.)

Where d denotes the dimensionality of the learned feature
representation, this representation facilitates downstream
matching, fusion, and decision-making processes. All
biometric samples were normalised to a standardised
intensity range before embedding, ensuring uniform feature
scaling across modalities. The balanced dataset configuration
minimises bias, thereby facilitating fair and reliable
multimodal learning in subsequent preprocessing and feature
extraction stages.

B. Preprocessing, Segmentation, and Normalisation for
Enhanced Feature Integrity

The biometric inputs used in this framework—iris and
fingerprint images—are obtained from the curated
repositories described in the acquisition stage, namely the
CASIA-IrisV3 database and the NIST Special Database 14.
To ensure consistency, clarity, and readiness for feature
extraction, the raw inputs undergo a structured preprocessing
pipeline that includes noise reduction, quality evaluation,
region segmentation, and normalisation.

This phase involves reducing unwanted artefacts in ocular
metrics to eliminate sensor-induced distortions, specular
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reflections, and inconsistent lighting. To mitigate distortion
while preserving the complex textural patterns required for
accurate iris detection, a Deep Noise Suppression Network
(DNSN) is employed. This circular iris area is then isolated
using segmented algorithms that eliminate reflected light,
eyelid occlusions, and eyelash occlusions. To achieve
consistency to scale, rotation, and pupil dilation, a segmented
eye can be extracted into a normalised circular orientation
area. This conversion makes sure that iris patterns with
different structural characteristics are all projected into the
same analytical domain.

Fingerprint images undergo a parallel enhancement
process. Initially, ridge refinement filters improve the clarity
of minutiae and local ridge flow. The core region is then
extracted to focus analysis on the most discriminative areas.
A quality-control module discards low-contrast or distorted
samples, ensuring that only valid inputs proceed through the
pipeline. The accepted patches are resized to a uniform
resolution and intensity-normalised. Statistical normalisation
is applied using:

Xnorm(i'j) = % - (5)

Where p and o stand for the image's mean and standard
deviation, respectively, and X (i, j) for the pixel intensity. By
reducing brightness overall, lighting disparities are
normalised, thereby optimising sample comparability.

Box 1. Pseudocode: Preprocessing, Segmentation, and

Normalisation

Input: Iris image I from CASIA, Fingerprint image F
from NIST
Output: Normalised iris Inorm, Normalised fingerprint
Fnorm
Step 1: Apply noise attenuation:
Leiean «— SuppressNoise(I)
Feican < SuppressNoise(F)
Step 2: Segment regions of interest:
Riris < Extractlris (Iciean)
Ry <« ExtractCore (Feican)
Step 3: Apply quality assessment:
If Quality(Riris) < threshold — discard
If Quality(Ryp) < threshold — discard
Step 4: Normalise geometric structure:
Lnorm <— PolarNormalize (Risis)
Frorm < ResizeAndEnhance (Rgp, N x N)

This integrated preprocessing
pipeline ensures that both iris
and fingerprint inputs are
noise-reduced, geometrically
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standardised, statistically normalised, and quality-verified.
By preserving structural integrity and discarding unreliable
samples, this stage establishes a robust foundation for
extracting high-fidelity embeddings in the subsequent feature
extraction module.

C. Advanced Feature Extraction: MLP-Mixer for Iris
and VAEs for Fingerprint

Following the preprocessing stage, the normalised iris and
fingerprint images are passed to the feature extraction
module, where identity-relevant information is transformed
into compact and discriminative embeddings. This stage is
pivotal, as the fidelity of extracted features directly governs
the accuracy and robustness of downstream matching and
fusion operations.

For iris recognition, this work employs the MLP-Mixer, a
lightweight yet powerful architecture that differs from both
convolutional and transformer-based designs. Each
normalised iris image is divided into non-overlapping
patches, flattened, and projected into an embedding space.
Let x; € RNXPrepresent the sequence of N patches, each with
embedding dimension . The token-mixing MLP captures
spatial dependencies across patches as:

U=X+ WooW,XT)T .. (6)

Where Wi, W, are learnable weight matrices and o (-) is a
non-linear activation. The channel-mixing MLP then captures
correlations across feature dimensions:

Y=U+ Voo(V,U) .. (7)

With Vi, V; as learnable weights. This two-step mechanism
enables the MLP-Mixer to effectively capture both fine-
grained iris patterns and long-range dependencies, producing
robust embeddings that preserve distinctiveness and
interpretability.

For fingerprint recognition, VAEs are adopted to encode
ridge and minutiae structures within a probabilistic
framework. Unlike deterministic encoders, VAEs map each
fingerprint into a latent distribution N (u, 6%), where p and
o represent the outputs of the encoder. The latent embedding
is obtained via the reparameterization trick:

z=p+0QO¢ge~NOID .. (8

This formulation ensures that the latent vector z not only
captures discriminative ridge structures but also models intra-
class variability and acquisition-induced distortions. During
training, reconstructed fingerprints from the decoder enforce
compact yet informative representations, while at inference
time, z is used as the feature embedding.

By combining the MLP-Mixer and VAE in a dual-stream
architecture, the framework extracts noise-resilient, compact,
and semantically rich modality-specific features. These
embeddings retain the essential identity cues of iris and
fingerprint modalities, ensuring discriminative power for
subsequent matching and fusion stages.
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Box 2. Pseudocode: Feature Extraction from Iris and
Fingerprint Modalities

Input: Normalised iris image I, normalised fingerprint
image F (from preprocessing stage)

Output: Feature embeddings Ei:is and Eg,

Process:

Step 1: Divide I into N non-overlapping patches: {Pi, P2,
veey Pn}

Step 2: Flatten patches and project into embeddings: xi €
RD

Step 3: Apply token-mixing MLP — U=X+
Woo (W, XT)"

Step 4: Apply channel-mixing MLP — Y =U+
Voo (Vy U)

Step 5: Aggregate outputs — Eiis =Y € RP

Step 6: Encode fingerprint image F using VAE — p, 6 =
Encoder(F)

Step 7: Sample latent vector z from N (y, 6?): z=p+oc ©
g,e~N(0,])

Step 8: Reconstruct fingerprint F' = Decoder(z) (used only
during training)

Step 9: Assign latent vector as fingerprint embedding Eg,
=z€RP

Step 10: Return (Eiss, Eg)

D. Precision-Driven Matching: Triplet Network for
Enhanced Similarity Assessment

In the matching stage, the modality-specific embeddings
derived from the iris and fingerprint streams are compared to
establish identity congruence. This framework employs a
Triplet Network, an extension of the Siamese paradigm,
designed to optimise similarity learning through comparative
analysis. Instead of evaluating pairs, the network processes
triplets consisting of an anchor embedding, a positive
embedding (with the same identity), and a negative
embedding (with a different identity). This arrangement
enforces discriminability by simultaneously minimising the
distance between anchor—positive pairs and maximising the
separation between anchor—negative pairs.

Formally, let E, E,, E, € R represent the embeddings of
anchor, positive, and negative samples. The objective is
expressed through the triplet loss function:

Leripier = max(0,l E, — E, 13 Il E; — E, 134+ ) ... (9)

Where this factor @ > 0 ensures that both positive and
negative pairings are kept at least a certain distance apart.
This approach ensures that even though embeddings from
various individuals are well-separated in the latent space,
representations from a single identity are grouped. There are
multiple benefits to using a triplet network. In addition to
effectively addressing overall ethnic contextual variability, it
enhances resistance to minor intra-class differences, such as
slight iris crypt deformations or fingerprint ridge pressure
discrepancies. Subsequently, it is also, easily scalable thanks
to its framework, which facilitates integration with other
biometric features in multimodal

systems.
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Box 3. Pseudocode: Matching Mechanism Using Triplet
Network
Input: Embeddings E, E, E, € RP (anchor, positive,
negative)
Output: Match/non-match decision for anchor sample
Process:
Step 1: Pass E, E, E, through identical subnetworks —
H.=f(E.), H=f(Ep), Hi=f(En)
Step 2: Compute squared distances:
Dan=||Ha— I‘In”2
Step 3: Evaluate triplet loss:
Ltriplet = max(0, Dap = Dgn + @)
Step 4:
If Dgp <T and D,,, > T— return 1 (Match)
Else — return 0 (non-match)
This triplet-based approach guarantees that embeddings are
optimal for relational location within the field of embedding
and for bilateral Higher discrimination,
scalability, and resilience are thus achieved by the system,
thereby enhancing the dependability of multimodal biometric
verification.

Dap = ”Ha_ lelz,

evaluation.

E. Fusion Module: Adaptive Multimodal Integration via
Cross-Attention Transformers

The suggested framework's integrating centre, its Fusion
Module, is where the modality-specific embeddings from the
fingerprints, together with the iris streams, are merged and
then aligned. This step utilises a Cross-Attention Transformer
that interactively develops interactions between the two
forms, in contrast to conventional fusion approaches such as
naive splicing or averaging. The methodology preserves
identity-relevant signals by downweighting smaller or noisy
locations and emphasising complementary traits by utilising
focus across modalities.

The iris embedding is denoted as Eiis € RP and the
fingerprint embedding is represented as Eg, € RP. Modality-
specific alignments are made possible by the fusion process,
which uses one embedding as the query and the other as the
source of key-value pairs. Formally, the cross-attention
operation is as follows:

Z = Softmax (Q—KT) %4

N

Where Q=W oEiris, K=Wg Efp, and V =Wy Efp, with W,

Wk, Wy representing learnable projection matrices. This

approach creates a merged model that reflects regional

individuality or broad multimodal coherence by allowing the

iris embedding to focus on salient fingerprint characteristics
(or vice versa).

The fused vector Visea € RX gets better by stacking several

(10)

cross-attention layers, where A”is the size of the multimodal
embedding space. This adaptive integration improves
robustness across varying acquisition settings by mitigating
frequent problems like pressure-induced fingerprint
distortion and partial obstruction in iris scans.

Box 4. Pseudocode: Multimodal Feature Fusion via
Cross-Attention Transformer
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Input: Eiis € RP (Iris Embedding), Eg € RP (Fingerprint
Embedding)
Output: Fused Representation Veysed € R¥
Process:
Step 1: Project embeddings into query, key, value spaces:
Q=WqEiwis, K=WgkEs, V=WvEfs
Step 2: Compute cross-attention:
ok”
Z = Softmax (Jd_k) 4
Step 3: Apply residual connection and feed-forward MLP:
Z'=MLP (Z + Eiris)
Step 4: Repeat for multiple stacked layers to refine
representation
Step 5: Aggregate outputs — fused embedding Vfused €
RK
Step 6: Pass Vryusea to the Decision Module for final
verification
By adjusting distorted and inadequate samples, this
attention-driven merging technique ensures that both
paradigms provide the best possible contribution to the
decision-making process. Instead of depending on static
rules, the algorithm develops adaptive positioning that
improves recognition accuracy, interpretability, and resilience
under a variety of operating circumstances.

F. Decision Module: Transparent Access Control via IG

The final phase of the multimodal biometric architecture
comprises the Deciding Module, where entry can be granted
or denied based on an assessment from preceding merged
embedded produced by the combination stage. This step
prioritises interpretability over correct classification,
ensuring that the decision-making process is open,
responsible, and reliable. The system uses IG, a gradient-
based attribution technique, to quantify every entry
component's contribution toward the model's prediction
to accomplish this.

Given the fused multimodal vector Veysea € RK, the classifier
F (-) produces a decision score that is subsequently
interpreted through IG. By integrating the gradients of the
prediction output with respect to the inputs along a linear
interpolation between a baseline (such as a zero vector) and
the actual input, the IG technique assigns priority to each
feature. The i feature's formal credit is as follows:

IF(x"+a (x—x"))
LELELD Go . (A1)

1G,(0) = (= x)) * [_,

where ris the fused embedding, .’ is the baseline, and /G
(x) denotes the contribution of feature Z This formulation
guarantees that the attributions are in line with sensitivity and
consistency criteria, as well as the variances in the model.

A confidence-aware threshold 7 is determined by the
decision-making process, meaning entry is only permitted if
the classifier's score surpasses this calibrated threshold.
Crucially, the IG attributions provide interpretable
explanations by highlighting the aspects of the fingerprint and
iris embeddings that most affected the result. In high-security
installations, where explainability aids in bias detection,
operational blind spot mitigation,
and user confidence
enhancement, this openness is
essential.
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Box 5. Pseudocode: IG-Based Biometric Decision
Module

Input: Viysea € R¥ (Fused Multimodal Representation)
Output: Access Label € {0: Denied, 1: Granted} with
Feature Attribution
Process:
Step 1: Pass Viused to trained classifier — Score = F(Vfysed)
Step 2: For each feature i € [1, K], compute attribution:
16G:() = (= x) » [, 502 da

Step 3: Aggregate attributions into vector IG = {IG, 1G;,
... IGk}
Step 4: Apply confidence-aware threshold t:

If Score >t — return 1 (Access Granted)

Else — return 0 (Access Denied)
Step 5: Output attributions IG for interpretability

This decision framework ensures that security-critical
judgments are explicit and verified by providing accessible
reasons along with exceptional recognition accuracy. The

() (b)
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algorithm's incorporation of IG allows for confidence
calibration while upholding ethical transparency, which
qualifies the mechanism for high-stakes, real-time
authentication scenarios.

IV. RESULTS AND PERFORMANCE EVALUATION

A thorough assessment of the suggested multimodal
biometric recognition framework is provided in this section.
Extensive experiments were carried out using the pre-
processed iris and fingerprint datasets introduced in the
acquisition step to evaluate their effectiveness. To maintain
classification features and help with consistent extraction of
features, an iris picture is subjected to a series of
transformations, such as segmentation, normalisation, and
spatial mapping, as shown in Fig. 3. These preprocessing
procedures improve resilience against external factors and
ethnic variety in addition to ensuring uniformity among
participants.

© (@

[Fig.3: Evolution of Iris Image through Key Stages of Analysis. (a) Initial Iris Image, (b) Segmentation of Iris Region,
(c) Normalized Iris in Rectangular Coordinates, (d) Normalized Iris in Radial Coordinates]

Fig. 3 illustrates the progressive refinement of an iris
sample, from raw acquisition to normalized forms. The
segmentation step isolates the annular region of interest,
while the two coordinate mappings (rectangular and radial)
provide structured representations that are invariant to scale
and rotation, enabling precise identity discrimination.

Progressive Fingerprint Processing Pipeline for Minutiae Extraction

[Fig.4: Progressive Fingerprint Processing Pipeline for
Minutiae Extraction: (a) Raw Input, (b) Normalized
Intensity, (c) Enhanced Fingerprint Output, (d) Ridge
Skeletonization, (e) Bifurcation Minutiae Map, (f) Ridge
Ending Minutiae Map]

Fig. 4 demonstrates the fingerprint enhancement pipeline,
which refines raw impressions into minutiae-level detail. Key
steps such as skeletonization and minutiae mapping distinctly
reveal bifurcations and ridge endings, both of which serve as
critical structural markers for robust fingerprint recognition.
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To quantify performance, multiple evaluation metrics were
employed. Accuracy is defined as the proportion of correctly
classified iris instances, combining the True Positive Rate
(TPR) and True Negative Rate (TNR) relative to the total
number of samples:

(TPR+TNR)
Total Iris Image

Accuracy = * 100

(12)

Here, TPR reflects correctly identified matches, while TNR
denotes accurately rejected non-matches. Precision measures
the fraction of true positives among all predicted positives,
thereby minimizing false positives.

TP
TP+FP '

Precision = (13)

where TP denotes true positives and F P false positives, high
precision is critical in biometric identification, as it prevents
the erroneous acceptance of irrelevant features. Recall (or
Sensitivity) captures the proportion of true positives relative

to all actual positives:
TP
TP+FN

Recall = (14)

Where FN denotes false negatives, high recall ensures that
significant iris features are consistently detected, reducing the
risk of overlooked identifiers.
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Table I1: Per-User Evaluation of Iris Feature Extraction
and Matching Performance Using MLP-Mixer

Metric Feature Feature Feature
Extraction Matching Matching
Accuracy (%) | Precision (%) Recall (%)
User 1 98.2 98.4 97.9
User 2 97.8 97.6 97.5
User 3 98.6 98.7 98.2
User 4 98.3 98.2 97.8
User 5 97.9 97.8 97.6

(&) Feature Extraction Accuracy

Lsar 5

Lizer 4

Lser 3

Uzer 2

Usgen 1

[bs) Feature Matching Precision

The outcomes of iris feature extraction and matching for
five users are shown in Table 2. Accuracy rates for the MLP-
Mixer-based architecture are consistently high, surpassing
97.8% in all subjects. With 98.6% feature extraction
accuracy, 98.7% precision, and 98.2% recall, User 3 achieves
the best results, demonstrating the model's resilience in
identifying subtle iris features and ensuring accurate
matching. These outcomes highlight how consistently the
system balances recall, accuracy, and exactness across
different user samples.

() Feature Matehing Recall

0 20 40 60 B0 L00 2 F T
AI::UF&':Y 1)

Frecisian 1%

R TR V1] ] 0 40 6¢ &0 100
Eecall ()

[Fig.5: Comparative Feature Performance Across Users Using MLP-Mixer]

A comparative analysis of the suggested MLP-Mixer-based
iris feature extraction across five users is shown in Fig. 5,
with an emphasis on three key measures. The precision of
feature extraction is shown in fig.5(a), where every user
frequently obtained excellent results, with a median value of
98.2%, highlighting the MLP-Mixer's resilience in encoding
unique iris structures. With a typical attribute match accuracy
of 98.1%, fig.5(b) demonstrates a remarkable capacity for
discrimination. Recall is highlighted in fig.5(c), with an
average of 97.8%, demonstrating the framework's capacity to
reduce missed identifications among users.

The Root Mean Square Error (RMSE) is used to measure
restoration quality in the VAE to further analyse fingerprint
recognition. The calculation of RMSE is:

N
1
RMSE = NZ(xi—f,)Z .. (15)
i=1
Where:  x;is the original feature, X, is the

reconstructed feature, and N is the total number of features.

Table III Fingerprint Feature Extraction - VAEs

Metric Feature Extraction Feature Reconstruction
Accuracy (%) Error (RMSE)

User 1 96.1 0.035

User 2 95.5 0.032

User 3 96.4 0.033

User 4 96.3 0.034

User 5 95.7 0.031

Table 3 reports the fingerprint extraction results using
VAEs. User 3 achieves the highest accuracy (96.4%), while
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User 5 records the lowest RMSE (0.031), reflecting superior
reconstruction fidelity. These findings emphasize the VAE’s
capacity to encode discriminative ridge structures with
minimal information loss.

Performance of VAE-Based Fingerprint Feature Extractiono

97.00 .036

96.75 6.35
< -0.035
96.50 N CL TS

-0.034

i

96.25

96.00 -0.033

95.75
-0.032

Feature Extraction Accuracy (%)
Recanstruction Error (RMSE]

95 50

-0.031
95.25

95.00 User 2

User 3

User 4

BN Accuracy (%)  —e— RMSE

[Fig.6: Performance of VAE-Based Fingerprint Feature
Extraction]

Fig. 6 Performance of VAE-based fingerprint feature
extraction. Blue bars represent per-user extraction accuracy,
while the red dashed line denotes reconstruction error
(RMSE). The model achieves a mean accuracy of 95.98% and
an average RMSE of 0.033, with User 3 recording the highest
accuracy (96.4%) and User 5 the lowest reconstruction error
(0.031).

For the matching stage, cosine similarity is used as a
similarity metric between
embeddings, defined as:
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A.B
Cosine similarity = ————— ... (16)
Al 1B
Where A and B are the two feature vectors, the numerator
is the dot product of A and B. The denominator is the product

of the magnitudes (Euclidean norms) of A and B.
Table IV: Matching Module - Triplet Network

Metric Matching Accuracy (%) Cosine Similarity Score
User 1 99.4 0.98
User 2 99.1 0.97
User 3 99.5 0.98
User 4 99.3 0.97
User 5 99.2 0.98

Table 4 evaluates the triplet-based matching module. User
3 achieves the highest accuracy (99.5%), while cosine
similarity remains consistently high (0.97-0.98) across all
users. This demonstrates the Triplet Network’s strength in
enforcing discriminability and reliably distinguishing
between intra-class and inter-class variations.

== Matching Accuracy (% —e— Cosine Similarity Score

User 1

User 2 User 3

Users

[Fig.7: Matching Performance Using Triplet Network]

Fig. 7 illustrates the per-user performance of the Triplet
Network. The blue histogram bars represent the matching
accuracy for each user, achieving an overall average of
99.3%, thereby confirming the network’s robustness and
discriminative capability. The red line plot indicates the
corresponding cosine similarity scores, averaging 0.976,
which reflects the consistency and separation quality of the
learned embeddings.

At the fusion stage, fusion error rate quantifies the
percentage of incorrect multimodal integration outcomes:

FPAFN 100 17)

Fusion Error Rate= ————
TP+TN+FP+FN

Where FP denotes False Positive Fusion Errors, FN
represents False Negative Fusion Errors, TP signifies
Correctly Identified Fusion Outcomes, and TN refers to
Correctly Rejected Fusion Outcomes.

Table V: Fusion Module - Cross-Attention Transformers

Metric Fusion Multimodal Fusion
Accuracy (%) Error Rate (%)

User 1 98.9 0.5

User 2 99.2 0.4

User 3 98.7 0.6

User 4 99.1 0.5

User 5 98.8 0.4

Table 5 illustrates the effectiveness of the cross—attention—
based fusion module. User 2 records the highest fusion
accuracy (99.2%) and the lowest error rate (0.4%). These
results confirm the module's adaptability in dynamically
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balancing contributions from both modalities, even under
noisy or incomplete input conditions.

q“F/LIJSiOn Module Performance Using Cross-Attention Transformgrm

0.65

99.2%
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5
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User 3 User 4
Users
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[Fig.8: Fusion Module Performance Using Cross-
Attention Transformers]

Fig.8 Fusion module performance using the Cross-
Attention Transformer. The plot shows the per-user fusion
accuracy, averaging 98.94%, alongside the corresponding
multimodal fusion error rates, which average only 0.48%.
These results validate the reliability of the cross-attention
mechanism in capturing inter-modal dependencies while
minimising false fusion outcomes.

For interpretability, the IG method was applied to quantify
the contribution of individual features in the fused
embedding. IG consistency measures how stably important
features are attributed across samples, defined as:

IG Consistency

Consistency in Important Features Across Samples
= *

= 100 ...
Total Number of Features

(18)

This metric evaluates the consistency with which specific
features contribute to the decision-making process, indicating
the stability and interpretability of the model’s decisions.

Table VI: Decision Module - IG

Metric Decision Accuracy (%) IG Consistency (%)
User 1 99.6 98.2
User 2 99.5 97.9
User 3 99.7 98.3
User 4 99.4 97.8
User 5 99.6 98.1

Table 6 shows consistently high performance of the
decision module. User 3 achieves the best outcomes with
99.7% accuracy and 98.3% IG consistency, validating both
predictive reliability and interpretability. These findings
affirm the model’s ability to make accurate, transparent, and
reproducible decisions in real-world biometric verification
scenarios.

Per-User Evelution of Model Performance and Explainability

(a) Decision Accuracy per User (b} |G Consistency per User

XRRX)

Metric Value (%

LI A
L

B i E B 16

¥ & N 3
Evaluation Stage Eva Uation Stage

[Fig.9: Per-User Progression of Decision Accuracy and
IG Consistency]

The left panel of Fig. 9 shows
progressive gains in decision
accuracy across users, while
the right panel illustrates the
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consistency of IG-based interpretability. Together, they
highlight the framework’s capacity to balance accuracy with
transparency, reinforcing its suitability for high-security
authentication tasks.

Table VII: Performance Summary of the Proposed
Model Across Training Phases

Epoch Training Validation Testing

Accuracy Accuracy Accuracy

(%) (%) (%)

10 93.5 91.2 90.6

20 95.1 93.8 93.1

30 96.4 95.6 95.0
Best Epoch 98.2 97.9 97.8 (best)

(Epoch 40)

At Epoch 40, the proposed model achieved its peak
performance, with training accuracy of 98.2%, validation
accuracy of 97.9%, and a testing accuracy of 97.8%, as shown
in Table 7. These results indicate stable convergence and
strong generalisation capacity across unseen data.

100 Training, Validation, and Testing Accuracy Across Epochs

%8 @ Best Accuracy

97.8% at Epoch 40

©
&

Accuracy (%)
°
4

92

Training Accuracy
90 Validation Accuracy
Testing Accuracy

10 20 30 40
Epoch

[Fig.10: Epoch-Wise Comparative Analysis of Training,
Validation, and Testing Accuracy in the Proposed Model]

Fig. 10 illustrates the accuracy trajectory across training
phases, highlighting the consistent improvement in all three
curves (training, validation, and testing). The convergence
behaviour demonstrates effective learning  without
overfitting, with the model achieving its best generalisation
at Epoch 40. The close alignment of validation and testing
curves with training accuracy underscores the framework’s
robustness and resilience against over-parameterisation.

Table VIII: Comparative Performance Analysis of Biometric
Recognition Techniques for Infants and Toddlers

Reference Reported
Techni Employed
(Author & Year) echnique Lmploye Accuracy
Al-Dabbas et al. Legendre wavelet + Gabor filter 93.8%
(2024) [5] features o
Meiramkhanov et
CNN + Gabor filter fusi 949
al. (2024) [13] abor filter fusion %
Liuetal. (2019) Fuzzified image + Capsule
83.1%
[17] network
MLP-Mixer giris), VAE 97.80%
(fingerprint), Triplet Network overall
Proposed Work (matching), Cross-Attention .
. recognition
Transformer (fusion), Integrated
. . - accuracy
Gradients (interpretability)
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Table 8 benchmarks the proposed multimodal framework
against existing infant and toddler biometric recognition
systems. While earlier works achieved moderate recognition
rates, such as 83.1% and 93.8% (using Legendre wavelet and
Gabor filter features), and stronger performance from
multimodal approaches (e.g., 94% with Liu et al.), the
proposed model outperforms all prior methods with an
overall accuracy of 97.8%. The combination of sophisticated
feature extractors (MLP-Mixer and VAE), robust matching
(Triplet Network), adaptive fusion (Cross-Attention
Transformer), and interpretable decision-making (IG) is
responsible for this better performance. When combined,
these components provide a transparent, scalable, and highly
selective biometric recognition system for difficult-to-
recognise early-age populations.

V. CONCLUSION AND FUTURE WORK

To achieve greater accuracy, robustness, and ubiquity
across various populations, the present research proposes a
comprehensive biometric authentication framework that
incorporates the complementary capabilities of fingerprint
and iris modalities. The durability of fingerprint patterns,
including the ridges, and the inherent uniqueness of iris
texturing enable the structure to overcome the drawbacks of
unimodal systems. The framework exhibits adaptability to
biological variation, circumstances, and age-related shifts by
incorporating sophisticated features for feature extraction
(MLP-Mixer and VAE), robust assessment (Triplet Network),
flexible fusion (Cross-Attention Transformer), and
interpretable decision-making (IG). The trial's outcomes
validate its strong functionality, highlighting its potential use
in critical applications, including private authentication,
access control, and protective services designed to combat
human trafficking.

Looking ahead, there are still several areas that could be
improved. Adding other modalities to the framework, such
as voice, palmprint, or face traits, can increase its robustness
and flexibility in unrestricted situations. More complex,
explainable Al techniques will enhance interpretability and
foster confidence in high-security applications. A further
significant avenue is to utilise generative modelling and
domain adaptation approaches to address operational issues,
such as occlusions, inconsistent lighting, and information
degradation. Furthermore, integration with mobile and
decentralised authentication platforms shall be simplified by
enhancing compatibility across platforms and improving
support for real-time deployment. Overall, this research
advances multimodal biometric systems that are trustworthy,
transparent, morally acceptable, and scalable, while also
being precise and adaptable for broad societal adoption.

ACKNOWLEDGMENT

The following succinctly describes the main contributions of
this study:

* Novel Multimodal Framework: This unified biometric
identification architecture combines

fingerprints and ocular modality
to improve resilience and
universality whilst

Published By:
Lattice Science Publication (LSP)
© Copyright: All rights reserved.

www.ijsp.latticescipub.com


http://doi.org/10.54105/ijsp.D1018.05041125
http://www.ijsp.latticescipub.com/

OPENaACCESS

successfully resolving the drawbacks of single-modal
methods.
* Advanced Algorithmic Integration: a hybrid pipeline that
combines a triplet network during discriminant matching,
MLP-Mixer with iris extraction of features, VAEs in
fingerprint visualisation, Cross-Attention Transformers over
adaptive multimodal fusion, as well as IG over transparent
decision-making.
* Thorough Evaluation: Extensive experimental validation
on benchmark datasets shows that the method outperforms
current state-of-the-art techniques in terms of recognition
accuracy, error rates, and interpretability, even in difficult
early-age biometric circumstances.
* Flexibility and Practical Importance: With immediate
applications in safe authentication, access management, and
child protection against human trafficking, this architecture is
made for real-world deployments or can be easily modified
to accommodate new modalities and mobile platforms.

By providing a solution that is precise, comprehensible,
robust, and legally significant, these combined efforts raise
the requirements for comprehensive biometric authentication.
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